PlexinA4 is necessary as a downstream target of Islet2 to mediate Slit signaling for promotion of sensory axon branching.

نویسندگان

  • Toshio Miyashita
  • Sang-Yeob Yeo
  • Yoshikazu Hirate
  • Hiroshi Segawa
  • Hironori Wada
  • Melissa H Little
  • Toshiya Yamada
  • Naoki Takahashi
  • Hitoshi Okamoto
چکیده

Slit is a secreted protein known to repulse the growth cones of commissural neurons. By contrast, Slit also promotes elongation and branching of axons of sensory neurons. The reason why different neurons respond to Slit in different ways is largely unknown. Islet2 is a LIM/homeodomain-type transcription factor that specifically regulates elongation and branching of the peripheral axons of the primary sensory neurons in zebrafish embryos. We found that PlexinA4, a transmembrane protein known to be a co-receptor for class III semaphorins, acts downstream of Islet2 to promote branching of the peripheral axons of the primary sensory neurons. Intriguingly, repression of PlexinA4 function by injection of the antisense morpholino oligonucleotide specific to PlexinA4 or by overexpression of the dominant-negative variant of PlexinA4 counteracted the effects of overexpression of Slit2 to induce branching of the peripheral axons of the primary sensory neurons in zebrafish embryos, suggesting involvement of PlexinA4 in the Slit signaling cascades for promotion of axonal branching of the sensory neurons. Colocalized expression of Robo, a receptor for Slit2, and PlexinA4 is observed not only in the primary sensory neurons of zebrafish embryos but also in the dendrites of the pyramidal neurons of the cortex of the mammals, and may be important for promoting the branching of either axons or dendrites in response to Slit, as opposed to the growth cone collapse.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual branch-promoting and branch-repelling actions of Slit/Robo signaling on peripheral and central branches of developing sensory axons.

Secreted Slit proteins signal through Robo receptors and negatively regulate axon guidance and cell migration, but in vertebrates, Slit proteins can also stimulate branching and elongation of sensory axons and cortical dendrites in vitro. Here, we show that this branching activity is required for developing peripheral sensory arbors in vivo, because trigeminal sensory branching above the eye is...

متن کامل

Involvement of Islet-2 in the Slit signaling for axonal branching and defasciculation of the sensory neurons in embryonic zebrafish

In Drosophila melanogaster, Slit acts as a repulsive cue for the growth cones of the commissural axons which express a receptor for Slit, Roundabout (Robo), thus preventing the commissural axons from crossing the midline multiple times. Experiments using explant culture have shown that vertebrate Slit homologues also act repulsively for growth cone navigation and neural migration, and promote b...

متن کامل

The Semaphorin receptor PlexinA3 mediates neuronal apoptosis during dorsal root ganglia development.

Extensive neuronal cell death during development is believed to be due to a limiting supply of neurotrophic factors. In vitro studies suggest that axon guidance molecules directly regulate neuronal survival, raising the possibility that they play a direct role in neuronal cell death in vivo. However, guidance errors may also influence survival indirectly due to loss of target-derived neurotroph...

متن کامل

Reception of Slit requires only the chondroitin-sulphate-modified extracellular domain of Syndecan at the target cell surface.

Syndecan (Sdc) is a conserved transmembrane heparan sulfate proteoglycan (HSPG) bearing additional chondroitin sulfate (CS) modifications on its extracellular domain. In vertebrates, this extracellular domain of Sdc is shed and acts as a soluble effector of cellular communication events, and its cytoplasmic domain participates in intracellular signaling needed to maintain epithelial integrity. ...

متن کامل

Distinct roles for Robo2 in the regulation of axon and dendrite growth by retinal ganglion cells

Guidance factors act on the tip of a growing axon to direct it to its target. What role these molecules play, however, in the control of the dendrites that extend from that axon's cell body is poorly understood. Slits, through their Robo receptors, guide many types of axons, including those of retinal ganglion cells (RGCs). Here we assess and contrast the role of Slit/Robo signalling in the gro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 131 15  شماره 

صفحات  -

تاریخ انتشار 2004